Name ______ Date ______ Period _____

<u>DIRECTIONS</u>: For #1-2, rewrite the logarithmic expressions in **exponential form**. Write your answers in the provided blanks.

1. $\log_9 729 = 3$

2. $\ln 24 = 3.18$

 $9^3 = 729$

$$e^{3.18} = 24$$

<u>DIRECTIONS</u>: For #3-4, rewrite the exponential expressions in **logarithmic form**. Write your answers in the provided blanks.

3. $e^7 = 1096.63$

4. $2^6 = 64$

$$ln 1096.63 = 7$$

$$\log_2 64 = 6$$

<u>DIRECTIONS</u>: For #5-9, **simplify** the expressions. Write your answers in the provided blanks.

5. log₆ 36

6. $\log_{27} \frac{1}{3}$

2

 $-\frac{1}{3}$

7. $2 \log 5 + \log 4$

8. $\log_3 4 - \log_3 36$

2

-2

- **9.** $\ln e^8$
 - 8

<u>DIRECTIONS</u>: For #10, **expand** the logarithmic expression. Write your answers in the provided blanks.

10.
$$\log_6 \frac{10x}{y^3}$$

$$\log_6 10 + \log_6 x - 3\log_6 y$$

<u>DIRECTIONS</u>: For #11-12, **condense** the logarithmic expressions **into one term**. Write your answers in the provided blanks.

11.
$$\ln 80 - \ln 20$$

12.
$$3 \log_4 x + \log_4 6$$

$$\log_4 6x^3$$

<u>DIRECTIONS</u>: For #13-17, **solve** the equations for the variable x. Write your answers in the provided blanks.

13.
$$\log_2 x = 8$$

14.
$$\log_x 16 = \frac{4}{3}$$

256

15. $\log_x 4 = 1$

4

16.
$$\log_a x = 3 \log_a 2 + \log_a 6$$

$$x = 48$$

17.
$$\log_b(x+2) - \log_b x = \log_b 6$$

$$x=\frac{2}{5}$$

<u>DIRECTIONS</u>: For #18-20, use the **change of base** formula (and a calculator) to evaluate the expressions to the nearest thousandth (3 decimal places). Write your answers in the provided blanks.

20.
$$\log_{\frac{1}{3}} 27$$

$$-3$$

<u>DIRECTIONS</u>: For #21-24, **solve for x**. Give answers to the nearest thousandth (3 decimal places)

21.
$$12^x = 360$$

22.
$$4 \log_3 x + 3 = 5$$

23.
$$\log x = 2.3491$$

24.
$$\log x = 31.9004$$

$$7.951 \times 10^{31}$$

223,409

The following formulas may help you answer #25-28.

$$A = p(1+r)^t$$
 $A = p(1-r)^t$ $A = p(1+\frac{r}{n})^{nt}$

<u>DIRECTIONS</u>: For #25-28, use the given information to **answer the questions**. Show work and round answers to the nearest hundredth (or nearest cent). Write your answers in the provided blanks.

25. A house appreciates at a rate of 2.4% per year. How much will the house be worth in 15 years if it was purchased for \$81,000?

\$115,607.06

26. A car that was purchased for \$24,000 depreciated to a value of \$8,000 after 6 years. What was the annual rate of depreciation?

16.73%

$$A = p(1+r)^t$$

$$A = p(1-r)^t$$

$$A = p(1 + \frac{r}{n})^{nt}$$

27. If you invest \$5,000 in a fund that earns 8% interest compounded quarterly, how much will you have after 10 years?

\$11,040.20

28. How long (in years) will it take for an amount deposited at 3.9% interest compounded monthly to double in value?

17.80 years